Natural History

André-Guillaume Dezauche. Carte Botanique de France from Jean-Baptiste Lamarck and Augustin Pyramus de Candolle. Courtesy of the Hunt Institute for Botanical Documentation, Carnegie Mellon University.

 

Natural History

Drew Armstrong

Formal Analysis and Plant Classification 

Before the nineteenth century, the main challenge of studying plants was learning to identify different species and assign standard, scientific names.  This skill was essentially visual and developed through the inspection of specimens in carefully arranged botanical gardens.  As new plant species flooded European collections as a product of expanded trade networks and global exploration, scholars developed a number of distinct systems of classification to cope with the enlarged scope of botanical knowledge.  In the Encyclopédie, the comparison of the systems proposed by Tournefort and Linnaeus made this situation manifest to mid-eighteenth-century readers.

By the late eighteenth-century, the figure whose name became synonymous with botanical taxonomy and nomenclature was the Swedish-born scholar Carl Linnaeus.  Focusing exclusively on the parts of plants involved in reproduction (or “fructification”), Linnaeus simplified the process of categorizing species based on the visual inspection of the flower and the number, proportion, shape and location of pistils and stamens.

Linnaeus divided the plant kingdom into three “tribes” based on leaf types and further sub-divided these into families (trees, grasses, ferns, mosses) grouped by common characteristics or “distinguishing marks.” Families were further subdivided into Classes, Orders, Genera, Species, and Varieties.  Orders and classes were established only as an aid to memory; Linnaeus did not believe they reflected “natural” groupings.  Genera and species, by contrast, existed in nature: all species in the same genus shared the same configuration of sexual organs and each genus was marked by a single “essential characteristic” apparent “at first sight” to the practiced eye.  Species existed as communities of individuals that could reproduce.  Varieties differed only due to accidents or environmental factors that in no way altered the fundamental characteristics of a species.

Books like this abridged, English edition of Linnaeus’s Philosophia Botanica explained his method to amateurs.  Rather than depicting individual plant species, Linnaeus included only a small number of simple line engravings illustrating all variants on the form of different parts of plants.  On one plate, for example, 62 leaf types are illustrated in schematic renderings and served to establish a systematic vocabulary of terms that could be applied to the description and naming of any plant.

Cross-Section of the Andes

Systems of botanical nomenclature are intended to be universal in their application and were based on visible characteristics that allowed species and genera to be distinguished from each other.  Of secondary concern to figures such as Linnaeus were issues such as the geographic distribution of plants, though since the Renaissance such data has been routinely gathered in encyclopedic compilations that aspire to provide thorough descriptions of individual species.  The use of representations such as maps and topographical cross-sections to show the relationship between geography, climate, altitude, and dominant plant species appears to be a major innovation around 1800.

Cursory remarks about plant distribution are encountered in earlier works, especially in the writings of travelers.  Tournefort, who was sent on a mission to the Near East by the French administration in 1700, found that as he ascended Mount Ararat (Armenia), he encountered plant species typical of increasingly northerly parts of Europe.  The German naturalist and explorer Alexander von Humboldt (1769-1859) made the same observation in the Andes during his travels to South America between 1799 and 1804.

In 1805, Humboldt presented his “Essay on the Geography of Plants” at the Institut de France in Paris, illustrated with a single cross-section through the Andes.  In this famous image, Humboldt assembled information from many related disciplines into a single, graphically compelling diagram.  Rather than focusing on identifying individual species in isolation, Humboldt sought to understand the interrelation of phenomena and the impact of contextual variables such as climate, altitude, and soil types on the growth and distribution of life.

In his best-known published work – Cosmos (1845-1862) – Humboldt aspired to present the reader with a complete “portrait of nature” and of man’s place within it.  The mid-nineteenth-century German school atlas exhibited here includes a cross-section of the Andes based directly on the work of Humboldt and was among the kinds of imagery that inspired Otto Neurath in his development of an international picture language.

Botanical Distribution Map of France

Publication of the third edition of Jean-Baptiste Lamarck’s important Flore française (1803-1815) was overseen by the Swiss-born botanist Augustin Pyramus de Candolle (1778-1841).  In addition to proposing a new system of plant classification, de Candolle included a novel “Botanical Map of France” (Carte botanique de la France).  Though thematic mapping was not completely new, this is an especially important early example of the technique being applied to natural history.  The purpose of the “Botanical Map of France” was two-fold: to graphically represent the extent of botanical knowledge at the time of publication and to define five geographic zones where distinct plant species dominated.

Variations in the typography used for place names denote different levels of botanical knowledge. The author intended that the map indicate where botanists should concentrate their efforts:

Capital letters (PARIS; MONTPELLIER; TURIN) indicate areas were plant species were well-documented in many published sources.
Small capitals (Grenoble; Geneva) indicate sites described in a single published flora.

Typography thus served to underline not only what parts of France were well documented by botanists, but also which cities lacked sophisticated scientific communities (for example, the major Atlantic port city of Bordeaux).

The “Botanical Map of France” used five colors to indicate different plant zones, resulting in a novel method for grouping species based on environment rather than on the degree of similarity apparent in their visible parts.

Like Humboldt’s exactly contemporary cross-sectional analysis of the Andes, the “Botanical Map of France” expanded plant studies to encompass the relationship between environment and distribution.  Variations in temperature and elevation were understood to be critical factors.  In order for the viewer to grasp the impact of altitude on plant distribution, elevations above sea-level are illustrated by dotted contour lines with heights indicated in meters.  The technique was borrowed from nautical cartography, which had long incorporated depth measurements on coastal maps.

Species Distribution

Rae Di Cicco

In the early modern era, the heterogeneity of flora and fauna found in different parts of the world was seen in terms of God’s delight in variety – the diversity of species distributed around the globe precluded creative monotony.  Identifying the context of a specimen was less important than illustrating its unique characteristics.
 
Earlier examples of atlases of natural history that include geographic specificity in their illustrations of species do so by including visual clues in the backgrounds, such as regionally specific architecture.  The botanical illustrations by Johann Christoph Volkamer and Robert John Thornton exhibited at the entrance to the Hall Gallery are exemplary of this technique.
 
Theorizing about the relationship between species and their environments, George Louis Leclerc, Comte de Buffon (1707–1788) made the challenging claim that animals and plants developed characteristics suited to their particular habitats and had the ability to mutate, or degenerate in Buffon’s terms, to better adapt to their surroundings.  Although he included maps in his important Natural History, General and Particular [Histoire naturelle, générale et particulière] (1749–1788), Buffon continued to contextualize specimens by including landscape views to indicate specific geographic locations.  In the volume from the English edition exhibited in the adjacent case, the geographic specificity of the “Turkish Dog” is suggested by the silhouette of Hagia Sophia (Istanbul) in the background (see image at right).
 
While portraits of specimens containing geographic markers allowed scientists to evoke environmental context on a case-by-case basis, distribution maps allowed for the comparison of several species – their populations, their characteristics, and their territory – simultaneously.  Plant and animal distribution maps illustrated the interaction of species on a macro level.  With the use of this new method of visualization, natural scientists were able to analyze their subjects from a new perspective, shifting the focus to comparative studies of species location, population size, historical migration, and adaptation.

Bulliard, Dictionnaire élémentaire de botanique (1798)
Lamarck , Encyclopédie méthodique (1782)

Allison McCann
 
No display on botanical categorization would be complete without a mention of Carl Linnaeus, often considered the father of modern botany.  Linnaeus devised his categorization method around the sexual systems of plants, counting and noting the configurations of the stamens and pistols.  Prior to his development, plants had primarily been identified and categorized according to external factors, such the shape, color, and configuration of leaves and petals.  In his Dictionnaire élémentaire de botanique first published in 1783, Pierre Bulliard (1742-1793) furnishes an example of this earlier method with a table titled “Methode de Tournefort.”  This table shows how Joseph Pitton de Tournefort advocated for a system of classification according to the external properties of flowers and leaves.  In contrast, Jean-Baptiste Lamarck (1744-1829) utilizes the Linnaean system in his volumes on botany for the Encyclopédie méthodique as a means of describing plant species. 

To the left, the “Analysis of the Sexual System of Carolus von Linnaeus” by Robert John Thornton (1768-1837) offers a schematic illustration of the Linnaean classificatory system.  On the far right of this chart, a column shows cork and pin models of the various stamen and pistol configurations that Linnaeus had identified.  The reproduction above this chart, a page from Jean-Louis Marie Poiret’s Leçons de flore, shows yet another visualization of the Linnaean sexual system.  Poiret collaborated with Lamarck on the Encyclopédie méthodique and ultimately took over the project.
 

Classification and Plant Anatomy

Allison McCann

Each botanical atlas on display here was published between the late-seventeenth to early-nineteenth centuries in Europe – an era that spans the Age of Enlightenment and the dawn of the Industrial Revolution. The modernization of the Western world set many scientific changes into motion, and new systems for ordering and classifying the natural world were chief among them. 

This new modernizing worldview was a striking departure from the pre-modern era that preceded it. Broadly construed, medieval understandings of the natural world had once sought to find heavenly corollaries to natural phenomena. The “natural sciences” once took a vastly different shape than they do today, and the study of flora and fauna was deeply enmeshed in biblical allegory. The books on view here offer a new conception of the natural world as a complex yet knowable natural sphere that can be ordered and systematized through man-made schema. These atlases represent a significant contribution to this new schematization of scientific understanding, as they are all concerned with breaking down specimens into their component parts and reordering them according to universal principles.

Not all of the botanists who contributed to these volumes used microscopy to create their images, but they all took a “micro” view when studying their specimens. Each took a focused view of individual plant parts, often highlighting segments that are invisible when the plant is viewed in its entirety. While the medieval herbalist had considered various plant specimens as a whole, these botanists considered their subjects part-by-part. By doing so, they were able to make novel comparisons among species, and broaden modern understanding of biological similarity.

Malpighi, Opera Omnia (1687)
Poiret, Leçons de flore (1819)

Allison McCann

Other naturalists worked in the spirit, if not the letter, of the Linnaean system, considering specimens according to the configuration of their parts, rather than by the properties of the whole.  By isolating and describing individual parts, botanist organized, classified, and compared species in novel ways.  When isolated and magnified, the elements of the specimens became de-contextualized and abstract, allowing the scientist to extrapolate from each specimen and to compare and categorize various genera and species at a macro level.

Marcello Malpighi (1628-1694), whose work is on display to the right, found essential similarities between the respiratory organs of certain plants and low-order insects.  Jean-Louis Marie Poiret (1755-1834), whose visualization of the Linnaean system is reproduced on a wall in this gallery, also produced a table shown in this case that demonstrates the value of counting hairs, thorns, glands, and other tiny plant components.  Such microscopic cross-species comparisons became the groundwork for thinking about the mutability of species and evolutionary change.

De Candolle, Limites polaires de quelques espéces (1855)
Scharff, The Lion (Felis leo) with the Geographical Distribution (1907)

Rae Di Cicco

The works on display here show how natural scientists used distribution mapping to propel the study of botany and zoology into new areas previously difficult to investigate.  One of two maps included in Alphonse de Candolle’s (1806-1893) Géographie botanique raisonnée (1855) reproduced here, shows how relationships between different species and geography were represented by distribution mapping.
 
De Candolle’s map compares the northern limits of several different species found across Europe.  The color-coded borderlines allow the viewer to compare the territories of species grouped by type – annuals in red, perennials in black, and ligneous in blue.  Like the “Botanical Map of France” produced by his father and included in the Front Gallery, de Candolle’s map plotted observations gleaned from dozens of authors and revealed gaps in knowledge about the extent of the habitats of individual species.
 
In contrast to de Candolle’s comparison of several species at a single point in time, Robert Francis Scharff (1858-1934) uses distribution maps to aid in the study of a single species across time.  In Scharff’s map of the lion, the current territory inhabited by the species felis leo, is indicated in black, while the dotted area indicates land inhabited by the lion at some point in the past.  Comparing the changing habitat of species over time provides a visually striking statement about the impacts of environment on survival.

Johnston, Physical Atlas of Natural Phenomena (1856)

Rae Di Cicco
 
Alexander Keith Johnston’s (1804-1871) Physical Atlas of Natural Phenomena (1856) is the first English atlas devoted to thematic maps, maps that include data about natural and human phenomena such as plant, animal and language distribution.  Johnston’s atlas is based on the German cartographer Heinrich Berghaus’s Physikalischer Atlas which was intended to serve as a supplement to Alexander von Humboldt’s Cosmos.  As shown in the Front Gallery, Humboldt’s pioneering work on botanical geography in the first half of the nineteenth century contributed to the development of new approaches for representing natural history.
 
The maps displayed here show two styles of distribution maps – the zoological map uses lines to indicate the territorial borders of carnivorous species while the botanical map employs shading to distinguish the regions where particular types of grains grow.  As a child, Otto Neurath perused the German version of this atlas in his father’s library and later described it as a major stimulus to his thinking about visual communication.

Volkamer, Aranzo Distorto (1708)
Thornton, Large Flowering Sensitive Plant (1807)
Thornton, Blue Egyptian Water Lily (1807)

Rae Di Cicco

Before the use of distribution maps, authors frequently noted the location where botanical or zoological specimens were found in the text of their compendia.  Some authors, including those on display here, chose to indicate geographic specificity through landscape cues, included in the background of illustrations of botanical specimens.

The English physician Robert John Thornton (1768-1837), writing for an audience of both serious scientists and laymen, says of his choice to include background elements specific to a particular region: “Each scenery is appropriated to the subject. … In the large-flowering MIMOSA, first discovered on the mountains of Jamaica, you have the humming birds of that country, and one of the aborigines struck with astonishment at the peculiarities of the plant.”  In addition to including geographically specific animals and humans, Thornton frequently uses architecture to indicate a specific locale, such as the palace at Aboukir, Egypt in the image of the Blue Egyptian Water Lily.  The German botanist  Johann Christoph Volkamer (1644-1720) similarly included the architecture of a particular town in Italy where the citrus Aranzo Distorto can be found.